

Reciprocal Hydrogen Bonding–Aromaticity Relationships

Judy I. Wu,*^{,†} James E. Jackson,[‡] and Paul von Ragué Schleyer[†]

[†]Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States

 $^{
m \ddagger}$ Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States

Supporting Information

ABSTRACT: Computed association energies and dissected nucleus-independent chemical shifts (NICS) document the mutual enhancement (or reduction) of intermolecular interactions and the aromaticity of H-bonded substrates. H-bonding interactions that increase cyclic $4n + 2 \pi$ -electron delocalization boost aromaticity. Conversely, such interactions are weakened when aromaticity is decreased as a result of more localized quinoidal π character. Representative examples of the tautomeric equilibria of π -conjugated heterocyclic compounds in protic solvents and other H-bonding environments also illustrate such H-bonding/aromaticity interplay.

T his communication elucidates the mutual reinforcement (or weakening) of "H-bonding interactions" and the "aromatic character" of representative systems through π electron polarization effects. Such relationships are based on *changes* in the aromatic character (i.e., the degree of cyclic π electron delocalization) of π -conjugated heterocycles. Thus, Hbonding interactions that increase cyclic $4n + 2 \pi$ -electron *delocalization* simultaneously enhance both the aromaticity^{1,2} of H-bonded substrates and their association energy (Figure 1a).

Figure 1. Mutually enhanced (a) and reduced (b) H-bonding interactions and π -aromatic character in H-bonded 2-pyridone (1) and 2-hydroxypyridine (2), respectively. (c) Tropone, tropolone, the tropylium cation, and the tropolone dimer (note the aromatic resonance contributors). Thick dotted lines (in blue) indicate strong H-bonding interactions; thin dashed lines indicate weak H-bonding interactions. "Aromatic sextets" are highlighted in red.

Conversely, H-bonding that results in greater π -electron *localization* decreases both the aromaticity and association energy (Figure 1b). The ca. 2–4 kcal/mol enhancement or reduction effects per H-bond are substantial; they correspond to changes of 20–60% in the usual H-bond strengths and up to 1000-fold shifts in tautomeric equilibria!

Dewar's 1945 seminal proposals of non-benzenoid aromaticity in stipitatic acid³ and its parent analogue tropolone⁴ (2hydroxytropone; Figure 1c) were based on his recognition of H-bond-enhanced π aromatization. While the cyclic six- π electron character of cycloheptatrienone (tropone; Figure 1c) due to the polarization of its exocyclic carbonyl group is quite modest,⁵ the aromaticity of tropolone is conspicuous.⁶ Intramolecular H-bonding of the exocyclic O–H and C==O groups enhances the aromaticity of the tropolone sevenmembered ring. Consequently, tropolone is more aromatic than tropone because of the enhanced cyclic six- π -electron delocalization induced by the O–H···O=C hydrogen bond: the resulting dipolar resonance contributor of tropolone resembles the aromatic tropylium cation⁷ more closely (Figure 1c).

In 2,5-dihydroxytropone, the infrared stretching frequency of the H-bonded 2-OH (3170 cm⁻¹) is strongly shifted relative to that of the "free" 5-OH (3660 cm⁻¹) as a result of the strong intramolecular O–H···O=C bonding,^{8,9} which enhances the π delocalization. The pronounced ring bond-length equalization of tropolone dimers (Figure 1c) in the solid state^{9,10} further illustrates the H-bonding/aromaticity coupling effect.

Other examples of H-bond-induced aromatization¹¹⁻²⁹ and the effects of intramolecular H-bonding and aromaticity on the tautomeric equilibria of heterocycles have been noted, ¹¹⁻¹⁹ but we emphasize here the general importance of this relationship for intermolecular H-bonding interactions. Satsyuk et al. found that intermolecular H-bonding interactions²⁰ and metal complexation²¹ influenced π -electron delocalization in the tautomeric forms of purines. Maksić and co-workers ascribed the high proton affinity of several organic superbases to ring π aromatization.²²⁻²⁴ Quiñonero and co-workers attributed the superior catalytic H-bond-donor ability of squaramide over urea to the increased aromaticity of the four-membered ring.^{25,26} Krygowski and co-workers pointed out that the aromaticity of the purines and pyrimidines constituting DNA and RNA is "sensitive to much weaker perturbations, such as those caused by H-bonding."²⁷ The effect of intermolecular H-bonding interactions on the geometries of aniline, anilinium, anilide,

Received: July 16, 2014 Published: September 12, 2014 pyridine, and pyridinium derivatives also have been examined.^{28,29}

We now present a proof-of-concept for intermolecular Hbonding/aromaticity coupling by emphasizing the remarkable geometric,³⁰ energetic, and magnetic consequences of this synergistic relationship. H-bonding interaction energies were computed at the PBE0/6-311++G(3df,3pd) level^{31,32} without zero-point energy (ZPE) corrections, employing Gaussian 03.³³ Dissected nucleus-independent chemical shifts at 1 Å above the heavy-atom ring centers, NICS(1)_{zz}³⁴⁻³⁶ (computed at the PW91/Def2-TZVPP level), were used to quantify *changes* in the magnetic aromaticities of the six-membered rings (see ref 37).

Remarkably, 2-pyridone (1) (Figure 2a) and 2-hydroxypyridine (2) (Figure 2c) dimers, 1_{dimer}^{38-40} and 2_{dimer} , display

Figure 2. Computed NICS(1)_{zz} (PW91/Def2-TZVPP) and dimerization energies [ΔE_{dimer} in kcal/mol; PBE0/6-311++G(3df/3pd), no ZPE] for (a) $\mathbf{1}_{dimer}$ (H-bond-induced aromaticity enhancement), (b) $\mathbf{3}_{dimer}$ (c) $\mathbf{2}_{dimer}$ (H-bond-induced aromaticity reduction), and (d) $\mathbf{4}_{dimer}$.

opposite *intermolecular* H-bond-induced effects on π aromaticity. Thus, the aromaticity of 1 [NICS(1)_{zz} = -10.6 ppm], due to the polarization of its exocyclic C==O π bond toward the more electronegative O atom (Figure 2a, left), increases in 1_{dimer} [NICS(1)_{zz} = -13.4 ppm (more negative NICS values indicate enhanced π aromaticity); Figure 2a, right] since the two N-H···O=C interactions polarize the benzenoid ring π -electron clouds and enhance their aromatic sextet character (cf. the resonance structure in red at the right of Figure 2a).

As a result of this H-bonding/aromaticity coupling effect, the N–H…O=C interactions in 1_{dimer} are stronger than those in formamide dimer (3_{dimer}), where no H-bond-induced π -aromatization results. Thus, the computed dimerization energy (ΔE_{dimer}) of 1_{dimer} (-20.9 kcal/mol) is 45% larger than that of 3_{dimer} (-14.5 kcal/mol) (Figure 2b). In accord with its stronger H-bond strength, the intermolecular H…O distances of 1_{dimer} (1.673 Å; Figure 2a) also are noticeably shorter than those of 3_{dimer} (1.879 Å; Figure 2b). The shortened N–CO bond (1.377 Å) and lengthened C=O bond (1.242 Å) of 1_{dimer} (cf. 1: N–

CO, 1.398 Å; C=O, 1.218 Å) also indicate enhanced aromatization in the six-membered rings of 1_{dimer} .

Conversely, the computed NICS $(1)_{zz}$ of -24.2 ppm for the six- π -electron compound 2 becomes less negative (diatropic) upon dimerization (-21.4 ppm for 2_{dimer} ; Figure 2c). The two O-H···N hydrogen-bonding interactions in 2_{dimer} reduce the aromatic sextet character of the six-membered rings (cf. the resonance structure in black in Figure 2c at the right), and are weakened relative to those in the dimer of hydroxyimine (the iminol form of formamide) (4_{dimer}) . Hence, the computed ΔE_{dimer} for $\mathbf{2}_{\text{dimer}}$ (-17.2 kcal/mol) is decreased by 21% compared with that of 4_{dimer} (-21.7 kcal/mol), which lacks aromatic rings (Figure 2d). The weaker binding of 2_{dimer} compared with 1_{dimer} is especially surprising since phenolic O-H groups generally form stronger H-bonds than amide N-H groups. The computed intermolecular N···H distances of 2_{dimer} (1.666 Å; Figure 2c) also are longer than those of 4_{dimer} (1.562 Å; Figure 2d). Like 2, 2-aminopyridine^{41,42} also displays energetic, magnetic, and geometric features indicative of Hbond-induced aromaticity reduction upon dimerization (for details, see the Supporting Information).

Because of the stabilization afforded by the aromatic sextet (a cyclic array of six π electrons that resists disruption),^{1,2} the energy gained by H-bond strengthening due to increased aromaticity (e.g., in $\mathbf{1}_{dimer}$) is greater than the energy lost by weakening an H-bonding interaction by reducing aromaticity (e.g., in $\mathbf{2}_{dimer}$). Compared with aromatic systems, antiaromatic rings are even more susceptible to H-bond-induced π polarization because of their "frustrated" π systems and propensity to relieve antiaromatic destabilization. Such relationships will be explored in a separate publication.

Intermolecular H-bonding interactions between cyclic π -conjugated keto or enol tautomers and protic solvents (or other H-bonding substrates) also perturb aromaticity and can shift tautomeric equilibria in either direction, depending on the situation. The computed PBE0/6-311++G(3df,3pd) keto–enol tautomerization energies for $2 \rightarrow 1$ versus $2^w \rightarrow 1^w$ (complexes with two water molecules) and $2^{gly} \rightarrow 1^{gly}$ (complexes with the zwitterionic glycine) in the gas phase (ΔE_T) and in watersolvated models ($\Delta E_{T(PCM)}$) are illustrative (Figure 3). Each model solvated system, 1^w-4^w , was complexed with two explicit water molecules (in their lowest-energy conformation) and in addition with bulk "aqueous solvation" as simulated by the polarizable continuum model (PCM).⁴³

Although 1 and 2 are equally stable in the gas phase (tautomerization energy $\Delta E_{\rm T} = +0.02$ kcal/mol favoring 1),⁴⁴ water solvation "aromatizes" and therefore lowers the energy of the keto form 1^w (cf. the enhanced delocalization depicted in Figure 3a, top right) but "dearomatizes" and thereby destabilizes the enol tautomer 2^w (Figure 3a, bottom right). Thus, the computed $\Delta E_{\rm T(PCM)}$ for 2^w \rightarrow 1^w (-4.4 kcal/mol, with two explicit waters and simulated bulk water solvation; see Figure 3a, center) strongly favors the "aromatized" keto form (1^w)! Earlier work attributed such tautomeric shifts to the greater dipolar character of 1.⁴⁵ However, on the basis of the same H-bonding motifs (but lacking H-bonding/aromaticity coupling), the computed $\Delta E_{\rm T(PCM)} = -11.2$ kcal/mol) differ by only 1.1 kcal/mol (Figure 3b).

Computed NICS(1)_{zz} data reveal that 1^{w} (-13.2 ppm) is more aromatic than 1 (-10.4 ppm), but 2^{w} (-22.0 ppm) is less aromatic than 2 (-24.2 ppm) (Figure 3a). Notably, *changes* in aromaticity, i.e., $1 \rightarrow 1^{w}$ (increased aromaticity) versus $2 \rightarrow 2^{w}$

Figure 3. Computed tautomerization energies [PBE0/6-311++G(3df/3pd), no ZPE] and NICS(1)_{zz} (PW91/Def2-TZVPP) for (a) $2 \rightarrow 1$ vs $2^{w} \rightarrow 1^{w}$ and (b) $4 \rightarrow 3$ vs $4^{w} \rightarrow 3^{w}$ in the gas-phase (ΔE_{T}) and in implicit water solvent ($\Delta E_{T(PCM)}$). (c) ΔE_{T} values for $2 \rightarrow 1$ vs $2^{gly} \rightarrow 1^{gly}$.

(decreased aromaticity), rather than the inherent relative aromatic character of 1^{w} (less aromatic) and 2^{w} (more aromatic) dictate their tautomeric ratios in water. Accordingly, the N-CO (1.374 Å) and C=O (1.248 Å) bonds of 1^{w} (in water) are shortened (-0.024, enhanced ring bond-length *equalization*) and lengthened (+0.030 Å) substantially compared with those of 1 (N-CO, 1.398 Å; C=O, 1.218 Å) in the gas phase.⁴⁵ In contrast, the N=CO (1.329 Å) and C-O (1.328 Å) bonds of 2^{w} (in water) are lengthened (+0.010) and shortened (-0.014) modestly relative to those of 2 (N=CO, 1.319 Å; C-O, 1.342 Å).

H-bonding interactions involving "zwitterions" (e.g., glycine; Figure 3c) can exhibit even more substantial H-bond-induced π -aromatization effects and shifts in tautomeric equilibria. Thus, the computed $\Delta E_{\rm T}$ for $2^{\rm gly} \rightarrow 1^{\rm gly}$ (-6.9 kcal/mol) is considerably larger than that for $2 \rightarrow 1$ (-0.02 kcal/mol) (Figure 3c); H-bonding with glycine increases the aromaticity in $1^{\rm gly}$ and lowers its energy relative to the dearomatized $2^{\rm gly}$. In the absence of H-bond/aromaticity coupling, the $\Delta E_{\rm T}$ values for $3^{\rm gly} \rightarrow 4^{\rm gly}$ (+10.6 kcal/mol) and $3 \rightarrow 4$ (+12.3 kcal/mol) illustrate the opposite effect; glycine complexation reduces the preference for the keto tautomer. The significantly *increased* diatropicity of $1^{\rm gly}$ [NICS(1)_{zz} = -15.6 ppm vs -10.4 ppm for 1] and *decreased* diatropicity of $2^{\rm gly}$ (-20.8 ppm vs -24.2 ppm for 2) also reveal the difference in H-bond-influenced aromaticity (Figure 3c). In chemistry, understanding often lags behind observations but then facilitates applications. The synergistic H-bonding/ aromaticity coupling effect discussed here provides valuable insights into strategies for tuning H-bond strengths. H-bonding interactions that increase (or decrease) cyclic $4n + 2\pi$ -electron delocalization are strengthened (or weakened). Such relationships may have considerable implications for molecular design, as the functions of many heterocyclic biomolecules and drugs rely on binding via H-bonds of a dominant keto/imine or enol/amine tautomer.^{46–48} Magnifications of H-bonding/aromaticity coupling beyond tuning "H-bond strengths" with "aromaticity" also may be achieved for other types of noncovalent interactions.

ASSOCIATED CONTENT

S Supporting Information

Cartesian coordinates and total electronic energies for all systems considered, a discussion of H-bond-induced aromaticity reduction in the 2-aminopyridine dimer, and complete ref 33. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

judywu@uga.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (Grant CHE 105-7466). We thank Dr. Keigo Ito for illuminating discussions.

REFERENCES

- (1) Armit, J. W.; Robinson, R. J. Chem. Soc. 1925, 127, 1604.
- (2) Balaban, A. T.; Schleyer, P. v. R.; Rzepa, H. S. Chem. Rev. 2005, 105, 3436 and references therein.
- (3) Dewar, M. J. S. Nature 1945, 155, 50.
- (4) Dewar, M. J. S. Nature 1950, 166, 790.
- (5) Najafian, K.; Schleyer, P. v. R.; Tidwell, T. T. Org. Biomol. Chem. 2003, 1, 3410.
- (6) Nozoe, T. Non-Benzenoid Aromatic Compounds; Interscience: New York, 1959; p 339.
- (7) Nozoe, T.; Seto, S.; Ikemi, T. Proc. Jpn. Acad. 1951, 27, 655.
- (8) Frost, R. K.; Hagemeister, F.; Schleppenbach, D.; Laurence, G.; Zwier, T. S. J. Phys. Chem. 1996, 100, 16835.
- (9) Kuratani, K.; Tsuboi, M.; Shimanouchi, T. Bull. Chem. Soc. Jpn. 1952, 25, 250.
- (10) Shimanouchi, H.; Sasada, Y. Acta. Crystallogr. 1973, B29, 81.
- (11) Moran, D.; Sukcharoenphon, K.; Puchta, R.; Schaefer, H. F., III;
- Schleyer, P. v. R.; Hoff, C. D. J. Org. Chem. 2002, 67, 9061.
- (12) Imashiro, F. Bull. Chem. Soc. Jpn. 2012, 85, 836.

(13) Zubatyuk, R. I.; Volovenko, Y. M.; Shishkin, O. V.; Gorb, L.; Leszczynski, J. J. Org. Chem. 2007, 72, 725.

- (14) Palusiak, M.; Simon, S.; Solà, M. J. Org. Chem. 2006, 71, 5241.
- (15) Martyniak, A.; Majerz, I.; Filarowski, A. RSC Adv. 2012, 2, 8135.

(16) Zubatyuk, R. I.; Shishkin, O. V.; Gorb, L.; Leszczynski, J. J. Phys. Chem. A **2009**, 113, 2943.

(17) Filarowski, A.; Kochel, A.; Cieslik, K.; Koll, A. J. Phys. Org. Chem. 2005, 18, 986.

(18) Krygowski, T. M.; Zachara-Horeglad, J. E.; Palusiak, M.; Pelloni, S.; Lazzeretti, P. *J. Org. Chem.* **2008**, *73*, 2138.

(19) Krygowski, T. M.; Zachara-Horeglad, J. E.; Palusiak, M. J. Org. Chem. 2010, 75, 4944.

Journal of the American Chemical Society

(20) Stasyuk, O. A.; Szatyłowicz, H.; Krygowski, T. M. Org. Biomol. Chem. 2014, 12, 456.

(21) Stasyuk, O. A.; Szatyłowicz, H.; Krygowski, T. M. J. Org. Chem. 2012, 77, 4035.

(22) Despotović, I.; Maksić, Z. B.; Vianello, R. New J. Chem. 2007, 31, 52.

(23) Maksić, Z. B.; Glasovac, Z.; Despotović, I. J. Phys. Org. Chem. 2002, 15, 499.

(24) Maksić, Z. B.; Kovačević, B. J. Phys. Chem. A 1999, 103, 6678.
(25) Quiñonero, D.; Prohens, R.; Garau, C.; Frontera, A.; Ballester,

P.; Costa, A.; Deyà, P. M. Chem. Phys. Lett. 2002, 351, 115.

(26) Quiñonero, D.; Frontera, A.; Ballester, P.; Deyà, P. M. *Tetrahedron Lett.* **2000**, *41*, 2001.

(27) Cyrański, M. K.; Gilski, M.; Jaskólski, M.; Krygowski, T. M. J. Org. Chem. 2003, 68, 8607.

(28) Krygowski, T. M.; Szatyłowicz, H.; Zachara-Horeglad, J. E. J. Org. Chem. 2005, 70, 8859.

(29) Szatyłowicz, H.; Krygowski, T. M.; Zachara-Horeglad, J. E. J. Chem. Inf. Model. 2007, 47, 875.

(30) Krygowski, T. M.; Szatylowicz, H.; Stasyuk, O. A.; Dominikowska, J.; Palusiak, M. Chem. Rev. 2014, 114, 6383.

(31) Sherill and co-workers' benchmark study of the performance of various density functional theory (DFT) and dispersion-corrected DFT (DFT-D) functionals against reference CCSD(T) computations at the complete basis set (CBS) limit (ref 32) verified the reliability of the PBE0 functional [with the 6-311++G(3df,3pd), aug-cc-pVDZ, and aug-cc-pVTZ basis sets] for quantifying H-bonding interaction energies. At the PBE0/6-311++G(3df,3pd) level, the mean absolute errors for the computed interaction energies of the formic acid, formamide, and formamidine dimers [0.53 kcal/mol, cf. CCSD(T)/CBS] are well below the 4–8 kcal/mol interaction energy differences discussed here.

(32) Thanthiriwatte, K. S.; Hohenstein, E. G.; Burns, L. A.; Sherill, C. D. J. Chem. Theory Comput. 2011, 7, 88.

(33) Frisch, M. J.; et al.; *Gaussian 03*, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.

(34) Chen, Z.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Chem. Rev. 2005, 105, 3842.

(35) Corminboeuf, C.; Heine, T.; Seifert, G.; Schleyer, P. v. R.; Weber, J. Phys. Chem. Chem. Phys. 2004, 6, 273.

(36) Fallah-Bagher-Shaidaei, H.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. *Org. Lett.* **2006**, *8*, 863.

(37) Isotropic NICS(1) were computed 1 Å above the heavy-atom centers for all heterocyclic six-membered rings. As the induced π ring currents associated with aromaticity are perpendicular to the applied external magnetic field, the more refined dissected NICS(1)_{zz} index extracts only the out-of-plane *zz* components (perpendicular to the ring plane). Negative NICS(1)_{zz} values denote aromaticity; positive NICS(1)_{zz} values denote antiaromaticity. Negative Δ NICS(1)_{zz} values indicate enhanced aromatic character upon H-bonding.

(38) Gallant, M.; Phan, V. M. T.; Wuest, J. D. J. Am. Chem. Soc. 1991, 113, 721.

(39) Müller, A.; Losada, M.; Leutwyler, S. J. Phys. Chem. A 2004, 108, 157.

(40) Ośmiałowski, B.; Dobosz, R. J. Mol. Model. 2011, 17, 2491.

(41) Wu, R.; Brutschy, B. J. Phys. Chem. A 2004, 108, 9715.

(42) Ottiger, P.; Frey, J. A.; Frey, H.; Leutwyler, S. J. Phys. Chem. A 2009, 113, 5280.

(43) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.

(44) Beak, P. Acc. Chem. Res. 1977, 10, 186.

(45) Wong, M. W.; Wiberg, K. B.; Frisch, M. J. J. Am. Chem. Soc. 1992, 114, 1645.

(46) Martin, Y. C. J. Comput.-Aided Mol. Des. 2009, 23, 693.

(47) Pospisil, P.; Ballmer, P.; Scapozza, L.; Folkers, G. J. Recept. Signal Transduction 2003, 23, 361.

(48) Katritzky, A. R.; Hall, C. D.; El-Gendy, B. E.-D. M.; Draghici, B.

J. Comput.-Aided Mol. Des. 2010, 24, 475.